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ABSTRACT

It is shown that those interactions of an elastic body B with an
elastic environment E manifested by local surfacial loadings should be
modelled by boundary operators featuring a livesystem of surfacial forces,
i.e., a vector field s, defined over the boundary (3B of B and
representing the surfacial force per unit area exerted by E over B, which
depends functionally in a non-trivial way on the deformation u of B.

In particular, under the assumptions that the constitutive equation of B
is compatible with e11iticity, and s is a function of the appropriate
restrictions to aB of u and its gradient, it is also shown that it is
reasonable to require that the resulting live-boundary condition of traction
be genuine, i.e., a normality condition prevail insuring the primary
consistency of the pair of field and boundary operators.

In addition to the analytical difficulties to be expected) .cf- [ 7),
Chapter 2), when normality does not hold the mechanical interpretation of
boundary conditions fails to be unique. That this is indeed the case is
demonstrated by producing an explicit example in linearized elastostatics of a
boundary operator which can be interpreted as a non-genuine live-boundary
condition of traction or as a dead-boundary condition of frictionless contact.
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SIGNIFICANCE AND EXPLANATION

In the real world, most loadings "follow" the deformation or, in the

terminology used in this paper, are live, in that their direction and/or their

magnitude may vary with the deformation itself (the hydrostatic pressure on a

submerged object and jet loading are common examples of live loadings;

buckling of elastic rods and plates and panel flutter are examples of statical

and dynamical problems from structural engineering and aeroelasticity,

respectively, where live loadings make an essential feature).

In spite of its practical importance and deep mathematical interest, a

general treatment of live loadings in linear and non-linear (and, especially,

three-dimensional) elasticity is still lacking.

The purpose of this paper is to delineate circumstances under which one

can expect a given boundary condition to represent realistically an unambigu-

ous mathematical model for live surfacc loading. It is shown that the

ellipticity up to the boundary of the field operator, as well as the normality

of the pair of field and boundary operators, both play a crucial role

(ellipticity is a requirement of physical and mathematical plausibility of

general use in elasticity; normality is a basic mutual consistency requirement

for field and boundary operators in the theory of elliptic systems, receiving
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THE ROLE OF ELLIPTICITY AND NORMALITY ASSUMPTIONS IN
FORMULATING LIVE-BOUNDARY CONDITIONS IN ELASTICITY

P. Podio-Guidugli*, G. Vergara Caffarelli** and E. G. Virga***

1. Introduction

The mechanical interaction of a body with its environment is a varied and

complex phenomenon which is difficult both to observe and describe carefully.

Boundary conditions modelling non-trivial interactions are difficult to

formulate mathematically; besides, they may easily lead to unusual boundary

value problems, perhaps even so much unusual as to challenge and defeat an

expert analyst. Not only that, blunt generalization of the few well-

understood types of boundary conditions may pose rather subtle problems of

interpretation and classification to the expert mechanist.

In Section 2, the bulk of this paper, we develop a train of reasoning

leading to formulate an unambiguous boundary condition of traction,

reproducing the non-linear interaction of an elastic body and an elastic

environment in strict contact with it; the emphasis here, in accordance with

our title, is on the role played by ellipticity and normality hypotheses.

In Section 3, we briefly discuss the importance of ellipticity and

normality in problems of elastostatics linearized about a stressed equilibrium

placement. In particular, we show by means of an explict example that, if the

environment is live but normality fails to hold, one can easily run into

taxonomic troubles.
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2. The Genuine Live-Boundary Condition of Traction

Let a (possibly unbounded) open regilar region B of RM, with M = 2

or 3, be separated by its exterior E by a smooth orientable surface S,

the common boundary of B and E, with n the exterior unit normal to B.

once constitutive prescriptions have been given, we may think of 8 as

the body, and of E as the environment of the body B.* Then, given any

judiciously chosen set of data, we may formulate a variety of mechanically

significant problems, anyone of which ultimately reduces to determine the

state (i.e., the triplet of displacement, strain and stress) over B U E,

provided a suitable set of jump conditions has been stipulated for the state

at the points of S.

Loosely, our goal is to sketch a credible scenario where a large class of

such problems for B U E can be reduced through a rational procedure to one

corresponding problem for 8 B U S, with the presence of E replaced by a

set of boundary conditions on S. To anticipate one of our main findings,

perhaps not about to come as any qreat surprise to the knowledgeable reader,

these boundary conditions will as a rule be of the live type, i.e., they will

be prescriptions of the surfacial stress vector which depend functionally in a

non-trivial way on the solution in

Now, let u, T denote the restrictions to S of the unique extensions

0 0u, T to B of smooth displacement and stress fields u, over B;

further, let (u,t), with t = Tn, denote the pair of fields over S con-

sistinq of the displacement u and the stress vector t; finally, let (v,s)

Nnticp that here we implicitly choose to not consider the interesting case

wto - itself is thought of as a material surface (in the manner, e.g., of
(,IPTTN & MUJPOCH [1]), and, therefore, made the object of a peculiar constitu-

tivP prescription. To contemplate such a case would require a more delicate
analysis.
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be defined over S in a completely analogous way, but starting from displace-
0

ment and stress field v and 9 defined over E. we wish to interpret

v(x), s(x) as, respectively, the displacement of boundary point x of the

environment and the contact force exerted at x by the environment over the

body.

A rather spontaneous assumption is that such contact force depends

functionally on the displacement field over E U S. Suppose that the stress

response of E to deformation have a local character, as is the case for

an elastic environment. Then, for x e S fixed, and for any given field v

on E, one finds natural to choose the functional dependence of s on v as

follows

(2.2) s(x) = (v(x),D (X)),

where D is the gradient operator.

A slight generalization of such a choice, of importance in our further

developments, is suggested by the splitting of the gradient operator D, at a

point x e S, into its normal and tangential parts Dn and Dt:

(2.3) Dv(x) = D v(x) + D t (x),nt

with

(2.4) D v(x) = 3 v(x) 9 n(x) , D tv(x) = D tv(x) ,(24 n nt

and with 8 denoting the operation of differentiating along the direction* n

n(x), the normal to S at x. Then, in view of (2), (3) and (4), one is

induced to replace (2) by

(2.5) S(x) = 6(v(x),Dtv(x), 3n;(x)) •

-3-



Our next step is to lay down a set of jump conditions for the state at

the points of S.

We say that the body 8 and its environment E have a strict contact in

a neighbourhood of a point x of their surface of separation S if

(2.6) u(x) = v(x) & t(x) = s(x)

In a strict contact, both the displacement and its tangential gradient

suffer no jump at - ; besides, the continuity of the stress vector at S

implies in general restrictions on the jump condition for the normal

derivative of displacement. To motivate the ad hoc assumptions we shall make

to determine those restrictions, we turn momentarily to linear elasticity.

Suppose that 8 and E, besides being in strict contact, are made up

with two linearly elastic materials with elliptic elasticity tensors C and

D, respectively, so that C, say, obeys

(EC) det C (a) # 0 for C ih(a) = Cijhkajak, a # 0.

If C (D) can be firstly extended and then restricted to S in such a way as

to preserve ellipticity, the matrix field

(2.7) A = CO(n) (B = D(n))

* has invertible values on S. Thus, as

(2.8) t = (CDu)n = Aa u + (CD tu)n,nt

we have that

(2.9) u = A- (t - (CD u)n) ,
n t

-4-



a formula which shows that, once u is assigned on S , t and a u aren

essentially interchangeable bits of information at a point of S. Likewise,

(2.1 ) a = -1
(2.10) B 1B (s - (DD u)n)

n t

Thus, in particular, if B and E are in strict contact, linearly elastic

and elliptic, the normal derivative of displacement suffers at S a discon-

tinuity depending on the local values of the stress vector and the tangential

gradient of displacement, as (AC) and (B,D) may be expected, in general,

to differ.

Remark I It is important to note that ellipticity, and not linearity of the

constitutive law, is the crucial assumption. Indeed, for B comprised of a

non-linearly elastic material, (8)2 is replaced by

(2.11) t = T(a n + D u)n
n t

and this equation is locally solvable for a u if the Ellipticity Condition
n

prevails, i.e.,

aT
(E) det C(a) ' 0 for Cih(a) = Tijhkajak , a p 0, T - 3

a(D;)

Remark 2 For boundary-value problems ruled by PDE's, ellipticity hypotheses

typically involve the coefficients of the field operator; here, EC plays an

important role at the boundary.

In the light of the above, if one assumes that B and E have a strict

contact, then (6) allows one to give (5) the following provisional form:

(2.12) S(x) = 6(u(x), D u(x), a v(x))
t n

-5-



Moreover, for elliptic elastic pairs of a body B and an environment E,

it seems safe to assume that both a u and n v depend on the tangentialnn

qradtenz and the stress vector

(2.13) n u (Dt u,t), a = V(D tu's)

and that the dependence on the stress vector is essential, in that the

au 3v
matrices t' s are invertible.

By (12) and (13), there exists a function g such that

(2.14) s(x) = g9 u(x), Dtu(x), s(x)j

Last step towards our goal, we assume the condition (14) is genuine, in that

for no assignment of u, Dtu it does reduce to an identity in s.

Accordingly, we require that

(Ge) det L # 0, with L = 1 -

G implies that (14) is locally solvable for s; then, s can be expressed

as a function of u and Dtu:

(2.15) s(x) = ,6(u(x), Dtu(x))

The last formula suggests that in formulating boundary value problems the

contact force exerted by the environment on the body ought chosen in general

to be of the live type.

Pemark 3 The special dependence (15) of s on boundary information

caricerning the solution has been considered by SPECTOR [2,3], who has termed

siflij such surfacial loading operators. SPECTOR has motivated his choice by

th,, observation, due to GURTIN [41, that pressure loading, a well-known

(x:xtiple of live loading, is indeed simple.

-6-
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Remark 4 For two linearly elastic elliptic bodies in strict contact, (12)

takes the form

s = B n + (DD tu)n

and is readilly inverted as

(2.10) a = B- (s - (DD tu)n)nt

which in turn corresponds to (13)2 . Therefore, (14) reduces to a sheer

identity, and g cannot be satisfied. This indicates that, in general, it is

not sound to require GC in a contact situation. However, on passing from

contact to boundary conditions, we believe that one can regard (13)2 as a

separate constitutive assumption, independent of (12) and consistent with it

in the peculiar sense made explicit by GC.

Substitution of (15) into (13)2 and, when use is made of (6)2, into

(13)1, allows us to complete with a suitable jump condition for the normal

derivative of displacement the set of jump conditions for the state to be

stipulated at a point of S. In summary, under hypotheses of strict contact,

ellipticity and genuinity, the displacement u and its tangential gradient

Dtu must be continuous, whereas the normal derivative a u of displacementn

may suffer a jump described by a function of u and Dtu, whose choice has

constitutive character.

We are now in a position to state a boundary condition of traction which

would describe a large class of contact actions exerted by an environment of

elastic type on an elastic body.

Naively, one would write a live-boundary condition of traction for B as

t(x) = s(x) for x e S,

-7-
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or rather (cf. (2) and (11)), as

(2.16) 1 (u, Du, u)(x) = 0 for x e S," n

with the boundary operator 1 defined by

(2.17) 1(u, Dtu, an u) = T(3n un + Dtu)n - 6(u, anfn + Dtu)

On the other hand, in view of (6), (13)1 and (15), the boundary operator

should have the following form

(2.18) X(u, Dtu, n i) = n 3 - u(u, D tu)

Now, I is locally reducible to £ if the implicit equation

1(u, Dtu, an a) = 0

nn

can be locally solved for anu;; this is the case if the following Normality

Condition holds:

(NC) det M(n) # 0 for M(n) = C(n) - fn, f =

a(Du)

Within the scenario we have set up, accepting bQ is mandatory. We

observe that EQ implies NC when the environment is dead, and reduces to an

assigned function of x only over ; more generally, when is indepen-

dent of the deformation gradient; finally, when d is simple in the sense of

Remark 3.

We call (16), with 1 restricted by N, the genuine live-boundary

condition of traction.

-8-



3. Ellipticity and Normality in Linearized Elastostatics

When one passes from a local study of a non-linear problem to the

corresponding linearized problem, both Eg and NC continue to play an important

role. Indeed, our present NC is a version appropriate to elasticity of the

homonymous condition introduced by GEYMONAT (5] and GRUBB [6] in the general

theory of linear elliptic systems, and appears to be the natural extension to

systems of the normality condition for scalar operators (vid. e.g. [7], Chapter

2).

If L and L prevail, we have shown in [8] that a Green formula, which

generalizes the reciprocity formula of Betti of classical elasticity, can be

associated to the traction boundary value problem of linearized elastostatics

with live loads. Such a Green formula allows one: (i) to define formal

adjoints to both the field and boundary operator; (ii) to determine a set of

conditions sufficient for self-adjointness; (iii) to state compatibility

conditions on the data necessary and sufficient [9] for solvability of the

underlying boundary-value problem in a familiar Hilbert space setting.

We now wish to give an example of the ambiguities t.at may accompany the

failure of NC.

In view of (2.16), a linearized live-boundary condition of traction can

be written as

(3.1) (TDu(x))n(x) - fMu(x) - Fu(x) = 0,

where u, with slight abuse of notation, is now used for the first approxi-

mation of the displacement from the reference placement;

(3.2) t(x) = (TDu(x))n(x);

A

(3.3) s(x) = fDu(x) + Fu(x), with F = L "
au

-9-



"hoose to describe a live environment such that

fihk PilTljhknj , Fih = Pih

':tl ' a perpendicular projection field over S. Then, it is easy to check

.I matrix M(n), which appears in the statement of NC, reduces to

M(n) (1 - P)C(n),

is, therefore, singular, whereas (1) takes the aspect

(1 - P)t + Pu = 0,

I ilently,

.) (1 - P)t = 0 & Pu = 0

f'rnvtiy recognizes in (7) a generalized boundary condition of the dead

1-. 10j, Chapter V). In particular, when P = nan, (7) reduces to the

-i,< :,.Ytact boundary condition:

t - (t'n)n = 0 & u'n = 0

f, I as in (4) and P = non, the boundary condition (1) can be

. .. I Iasrified as a live-boundary condition of traction or as a dead-

A! '.n'i It hj,,r of contact.

sIm'ar examples can be concocted. But, the validity of NC

-1 i[ I',. al'y pathology.

. K,,Iwledyement We wish to acknowledge a stimulating discussion with

(;. 2?-,/onet. We also wish to thank W. Williams and M. E. Gurtin for many
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